
Package: doc2vec (via r-universe)
September 7, 2024

Type Package

Title Distributed Representations of Sentences, Documents and Topics

Version 0.2.1

Maintainer Jan Wijffels <jwijffels@bnosac.be>

Description Learn vector representations of sentences, paragraphs or
documents by using the 'Paragraph Vector' algorithms, namely
the distributed bag of words ('PV-DBOW') and the distributed
memory ('PV-DM') model. The techniques in the package are
detailed in the paper ``Distributed Representations of Sentences
and Documents'' by Mikolov et al. (2014), available at
<arXiv:1405.4053>. The package also provides an implementation
to cluster documents based on these embedding using a technique
called top2vec. Top2vec finds clusters in text documents by
combining techniques to embed documents and words and
density-based clustering. It does this by embedding documents
in the semantic space as defined by the 'doc2vec' algorithm.
Next it maps these document embeddings to a lower-dimensional
space using the 'Uniform Manifold Approximation and Projection'
(UMAP) clustering algorithm and finds dense areas in that space
using a 'Hierarchical Density-Based Clustering' technique
(HDBSCAN). These dense areas are the topic clusters which can
be represented by the corresponding topic vector which is an
aggregate of the document embeddings of the documents which are
part of that topic cluster. In the same semantic space similar
words can be found which are representative of the topic. More
details can be found in the paper 'Top2Vec: Distributed
Representations of Topics' by D. Angelov available at
<arXiv:2008.09470>.

URL https://github.com/bnosac/doc2vec

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

1

https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/2008.09470
https://github.com/bnosac/doc2vec

2 as.matrix.paragraph2vec

Depends R (>= 2.10)

Imports Rcpp (>= 0.11.5), stats, utils

LinkingTo Rcpp

Suggests tokenizers.bpe, word2vec (>= 0.3.3), uwot, dbscan, udpipe (>=
0.8)

Repository https://bnosac.r-universe.dev

RemoteUrl https://github.com/bnosac/doc2vec

RemoteRef HEAD

RemoteSha 9b40740efc63de077365885d3cfeea081b996ee1

Contents
as.matrix.paragraph2vec . 2
be_parliament_2020 . 3
paragraph2vec . 4
paragraph2vec_similarity . 7
predict.paragraph2vec . 8
read.paragraph2vec . 10
summary.top2vec . 11
top2vec . 12
txt_count_words . 15
update.top2vec . 16
write.paragraph2vec . 17

Index 18

as.matrix.paragraph2vec

Get the document or word vectors of a paragraph2vec model

Description

Get the document or word vectors of a paragraph2vec model as a dense matrix.

Usage

S3 method for class 'paragraph2vec'
as.matrix(
x,
which = c("docs", "words"),
normalize = TRUE,
encoding = "UTF-8",
...

)

be_parliament_2020 3

Arguments

x a paragraph2vec model as returned by paragraph2vec or read.paragraph2vec

which either one of ’docs’ or ’words’

normalize logical indicating to normalize the embeddings. Defaults to TRUE.

encoding set the encoding of the row names to the specified encoding. Defaults to ’UTF-
8’.

... not used

Value

a matrix with the document or word vectors where the rownames are the documents or words upon
which the model was trained

See Also

paragraph2vec, read.paragraph2vec

Examples

library(tokenizers.bpe)
data(belgium_parliament, package = "tokenizers.bpe")
x <- subset(belgium_parliament, language %in% "french")
x <- subset(x, nchar(text) > 0 & txt_count_words(text) < 1000)

model <- paragraph2vec(x = x, type = "PV-DM", dim = 15, iter = 5)

model <- paragraph2vec(x = x, type = "PV-DBOW", dim = 100, iter = 20)

embedding <- as.matrix(model, which = "docs")
embedding <- as.matrix(model, which = "words")
embedding <- as.matrix(model, which = "docs", normalize = FALSE)
embedding <- as.matrix(model, which = "words", normalize = FALSE)

be_parliament_2020 Corpus with Questions asked in the Belgium Federal Parliament in
2020

Description

The dataset was extracted from http://data.dekamer.be and contains questions asked by members in
the Belgium Federal parliament in 2020.
The Questions are in Dutch and French and contains 6059 text fragments.

The dataset contains the following information:

4 paragraph2vec

• doc_id: an identifier

• text_nl: the question itself in Dutch

• text_fr: the question itself in French

Source

data is provided by http://www.dekamer.be in the public domain (CC0).

Examples

data(be_parliament_2020)
str(be_parliament_2020)

paragraph2vec Train a paragraph2vec also known as doc2vec model on text

Description

Construct a paragraph2vec model on text. The algorithm is explained at https://arxiv.org/pdf/
1405.4053.pdf. People also refer to this model as doc2vec.
The model is an extension to the word2vec algorithm, where an additional vector for every para-
graph is added directly in the training.

Usage

paragraph2vec(
x,
type = c("PV-DBOW", "PV-DM"),
dim = 50,
window = ifelse(type == "PV-DM", 5L, 10L),
iter = 5L,
lr = 0.05,
hs = FALSE,
negative = 5L,
sample = 0.001,
min_count = 5L,
threads = 1L,
encoding = "UTF-8",
embeddings = matrix(nrow = 0, ncol = dim),
...

)

https://arxiv.org/pdf/1405.4053.pdf
https://arxiv.org/pdf/1405.4053.pdf

paragraph2vec 5

Arguments

x a data.frame with columns doc_id and text or the path to the file on disk con-
taining training data.
Note that the text column should be of type character, should contain less than
1000 words where space or tab is used as a word separator and that the text
should not contain newline characters as these are considered document delim-
iters.
The doc_id should not contain spaces.

type character string with the type of algorithm to use, either one of

• ’PV-DM’: Distributed Memory paragraph vectors
• ’PV-DBOW’: Distributed Bag Of Words paragraph vectors

Defaults to ’PV-DBOW’.

dim dimension of the word and paragraph vectors. Defaults to 50.

window skip length between words. Defaults to 10 for PV-DM and 5 for PV-DBOW

iter number of training iterations. Defaults to 20.

lr initial learning rate also known as alpha. Defaults to 0.05

hs logical indicating to use hierarchical softmax instead of negative sampling. De-
faults to FALSE indicating to do negative sampling.

negative integer with the number of negative samples. Only used in case hs is set to
FALSE

sample threshold for occurrence of words. Defaults to 0.001

min_count integer indicating the number of time a word should occur to be considered as
part of the training vocabulary. Defaults to 5.

threads number of CPU threads to use. Defaults to 1.

encoding the encoding of x and stopwords. Defaults to ’UTF-8’. Calculating the model
always starts from files allowing to build a model on large corpora. The encoding
argument is passed on to file when writing x to hard disk in case you provided
it as a data.frame.

embeddings optionally a matrix with pretrained word embeddings which will be used to ini-
tialise the word embedding space with (transfer learning). The rownames of this
matrix should consist of words. Only words overlapping with the vocabulary
extracted from x will be used.

... further arguments passed on to the C++ function paragraph2vec_train - for
expert use only

Value

an object of class paragraph2vec_trained which is a list with elements

• model: a Rcpp pointer to the model

• data: a list with elements file: the training data used, n (the number of words in the training
data), n_vocabulary (number of words in the vocabulary) and n_docs (number of documents)

• control: a list of the training arguments used, namely min_count, dim, window, iter, lr, skip-
gram, hs, negative, sample

6 paragraph2vec

References

https://arxiv.org/pdf/1405.4053.pdf, https://groups.google.com/g/word2vec-toolkit/
c/Q49FIrNOQRo/m/J6KG8mUj45sJ

See Also

predict.paragraph2vec, as.matrix.paragraph2vec

Examples

library(tokenizers.bpe)
Take data and standardise it a bit
data(belgium_parliament, package = "tokenizers.bpe")
str(belgium_parliament)
x <- subset(belgium_parliament, language %in% "french")
x$text <- tolower(x$text)
x$text <- gsub("[^[:alpha:]]", " ", x$text)
x$text <- gsub("[[:space:]]+", " ", x$text)
x$text <- trimws(x$text)
x$nwords <- txt_count_words(x$text)
x <- subset(x, nwords < 1000 & nchar(text) > 0)

Build the model
model <- paragraph2vec(x = x, type = "PV-DM", dim = 15, iter = 5)

model <- paragraph2vec(x = x, type = "PV-DBOW", dim = 100, iter = 20)

str(model)
embedding <- as.matrix(model, which = "words")
embedding <- as.matrix(model, which = "docs")
head(embedding)

Get vocabulary
vocab <- summary(model, type = "vocabulary", which = "docs")
vocab <- summary(model, type = "vocabulary", which = "words")

Transfer learning using existing word embeddings
library(word2vec)
w2v <- word2vec(x$text, dim = 50, type = "cbow", iter = 20, min_count = 5)
emb <- as.matrix(w2v)
model <- paragraph2vec(x = x, dim = 50, type = "PV-DM", iter = 20, min_count = 5,

embeddings = emb)

Transfer learning - proof of concept without learning (iter=0, set to higher to learn)
emb <- matrix(rnorm(30), nrow = 2, dimnames = list(c("en", "met")))
model <- paragraph2vec(x = x, type = "PV-DM", dim = 15, iter = 0, embeddings = emb)
embedding <- as.matrix(model, which = "words", normalize = FALSE)
embedding[c("en", "met"),]
emb

https://arxiv.org/pdf/1405.4053.pdf
https://groups.google.com/g/word2vec-toolkit/c/Q49FIrNOQRo/m/J6KG8mUj45sJ
https://groups.google.com/g/word2vec-toolkit/c/Q49FIrNOQRo/m/J6KG8mUj45sJ

paragraph2vec_similarity 7

paragraph2vec_similarity

Similarity between document / word vectors as used in paragraph2vec

Description

The similarity between document / word vectors is defined as the inner product of the vector ele-
ments

Usage

paragraph2vec_similarity(x, y, top_n = +Inf)

Arguments

x a matrix with embeddings where the rownames of the matrix provide the label
of the term

y a matrix with embeddings where the rownames of the matrix provide the label
of the term

top_n integer indicating to return only the top n most similar terms from y for each row
of x. If top_n is supplied, a data.frame will be returned with only the highest
similarities between x and y instead of all pairwise similarities

Value

By default, the function returns a similarity matrix between the rows of x and the rows of y. The
similarity between row i of x and row j of y is found in cell [i, j] of the returned similarity matrix.
If top_n is provided, the return value is a data.frame with columns term1, term2, similarity and rank
indicating the similarity between the provided terms in x and y ordered from high to low similarity
and keeping only the top_n most similar records.

See Also

paragraph2vec

Examples

x <- matrix(rnorm(6), nrow = 2, ncol = 3)
rownames(x) <- c("word1", "word2")
y <- matrix(rnorm(15), nrow = 5, ncol = 3)
rownames(y) <- c("doc1", "doc2", "doc3", "doc4", "doc5")

paragraph2vec_similarity(x, y)
paragraph2vec_similarity(x, y, top_n = 1)
paragraph2vec_similarity(x, y, top_n = 2)
paragraph2vec_similarity(x, y, top_n = +Inf)
paragraph2vec_similarity(y, y)
paragraph2vec_similarity(y, y, top_n = 1)

8 predict.paragraph2vec

paragraph2vec_similarity(y, y, top_n = 2)
paragraph2vec_similarity(y, y, top_n = +Inf)

predict.paragraph2vec Predict functionalities for a paragraph2vec model

Description

Use the paragraph2vec model to

• get the embedding of documents, sentences or words

• find the nearest documents/words which are similar to either a set of documents, words or a
set of sentences containing words

Usage

S3 method for class 'paragraph2vec'
predict(
object,
newdata,
type = c("embedding", "nearest"),
which = c("docs", "words", "doc2doc", "word2doc", "word2word", "sent2doc"),
top_n = 10L,
encoding = "UTF-8",
normalize = TRUE,
...

)

Arguments

object a paragraph2vec model as returned by paragraph2vec or read.paragraph2vec

newdata either a character vector of words, a character vector of doc_id’s or a list of
sentences where the list elements are words part of the model dictionary. What
needs to be provided depends on the argument you provide in which. See the
examples.

type either ’embedding’ or ’nearest’ to get the embeddings or to find the closest text
items. Defaults to ’nearest’.

which either one of ’docs’, ’words’, ’doc2doc’, ’word2doc’, ’word2word’ or ’sent2doc’
where

• ’docs’ or ’words’ can be chosen if type is set to ’embedding’ to indicate
that newdata contains either doc_id’s or words

• ’doc2doc’, ’word2doc’, ’word2word’, ’sent2doc’ can be chosen if type is
set to ’nearest’ indicating to extract respectively the closest document to
a document (doc2doc), the closest document to a word (word2doc), the
closest word to a word (word2word) or the closest document to sentences
(sent2doc).

predict.paragraph2vec 9

top_n show only the top n nearest neighbours. Defaults to 10, with a maximum value
of 100. Only used for type ’nearest’.

encoding set the encoding of the text elements to the specified encoding. Defaults to
’UTF-8’.

normalize logical indicating to normalize the embeddings. Defaults to TRUE. Only used for
type ’embedding’.

... not used

Value

depending on the type, you get a different output:

• for type nearest: returns a list of data.frames with columns term1, term2, similarity and rank
indicating the elements which are closest to the provided newdata

• for type embedding: a matrix of embeddings of the words/documents or sentences provided in
newdata, rownames are either taken from the words/documents or list names of the sentences.
The matrix has always the same number of rows as the length of newdata, possibly with NA
values if the word/doc_id is not part of the dictionary

See the examples.

See Also

paragraph2vec, read.paragraph2vec

Examples

library(tokenizers.bpe)
data(belgium_parliament, package = "tokenizers.bpe")
x <- belgium_parliament
x <- subset(x, language %in% "dutch")
x <- subset(x, nchar(text) > 0 & txt_count_words(text) < 1000)
x$doc_id <- sprintf("doc_%s", 1:nrow(x))
x$text <- tolower(x$text)
x$text <- gsub("[^[:alpha:]]", " ", x$text)
x$text <- gsub("[[:space:]]+", " ", x$text)
x$text <- trimws(x$text)

Build model
model <- paragraph2vec(x = x, type = "PV-DM", dim = 15, iter = 5)

model <- paragraph2vec(x = x, type = "PV-DBOW", dim = 100, iter = 20)

sentences <- list(
example = c("geld", "diabetes"),
hi = c("geld", "diabetes", "koning"),
test = c("geld"),
nothing = character(),
repr = c("geld", "diabetes", "koning"))

10 read.paragraph2vec

Get embeddings (type = 'embedding')
predict(model, newdata = c("geld", "koning", "unknownword", NA, "</s>", ""),

type = "embedding", which = "words")
predict(model, newdata = c("doc_1", "doc_10", "unknowndoc", NA, "</s>"),

type = "embedding", which = "docs")
predict(model, sentences, type = "embedding")

Get most similar items (type = 'nearest')
predict(model, newdata = c("doc_1", "doc_10"), type = "nearest", which = "doc2doc")
predict(model, newdata = c("geld", "koning"), type = "nearest", which = "word2doc")
predict(model, newdata = c("geld", "koning"), type = "nearest", which = "word2word")
predict(model, newdata = sentences, type = "nearest", which = "sent2doc", top_n = 7)

Similar way on extracting similarities
emb <- predict(model, sentences, type = "embedding")
emb_docs <- as.matrix(model, type = "docs")
paragraph2vec_similarity(emb, emb_docs, top_n = 3)

read.paragraph2vec Read a binary paragraph2vec model from disk

Description

Read a binary paragraph2vec model from disk

Usage

read.paragraph2vec(file)

Arguments

file the path to the model file

Value

an object of class paragraph2vec which is a list with elements

• model: a Rcpp pointer to the model

• model_path: the path to the model on disk

• dim: the dimension of the embedding matrix

Examples

library(tokenizers.bpe)
data(belgium_parliament, package = "tokenizers.bpe")
x <- subset(belgium_parliament, language %in% "french")
x <- subset(x, nchar(text) > 0 & txt_count_words(text) < 1000)

summary.top2vec 11

model <- paragraph2vec(x = x, type = "PV-DM", dim = 100, iter = 20)
model <- paragraph2vec(x = x, type = "PV-DBOW", dim = 100, iter = 20)

path <- "mymodel.bin"

write.paragraph2vec(model, file = path)
model <- read.paragraph2vec(file = path)

vocab <- summary(model, type = "vocabulary", which = "docs")
vocab <- summary(model, type = "vocabulary", which = "words")
embedding <- as.matrix(model, which = "docs")
embedding <- as.matrix(model, which = "words")

summary.top2vec Get summary information of a top2vec model

Description

Get summary information of a top2vec model. Namely the topic centers and the most similar words
to a certain topic

Usage

S3 method for class 'top2vec'
summary(
object,
type = c("similarity", "c-tfidf"),
top_n = 10,
data = object$data,
embedding_words = object$embedding$words,
embedding_docs = object$embedding$docs,
...

)

Arguments

object an object of class top2vec as returned by top2vec

type a character string with the type of summary information to extract for the top-
words. Either ’similarity’ or ’c-tfidf’. The first extracts most similar words to
the topic based on semantic similarity, the second by extracting the words with
the highest tf-idf score for each topic

top_n integer indicating to find the top_n most similar words to a topic

12 top2vec

data a data.frame with columns ‘doc_id‘ and ‘text‘ representing documents. For each
topic, the function extracts the most similar documents. And in case type is
'c-tfidf' it get the words with the highest tf-idf scores for each topic.

embedding_words

a matrix of word embeddings to limit the most similar words to. Defaults to the
embedding of words from the object

embedding_docs a matrix of document embeddings to limit the most similar documents to. De-
faults to the embedding of words from the object

... not used

Examples

For an example, look at the documentation of ?top2vec

top2vec Distributed Representations of Topics

Description

Perform text clustering by using semantic embeddings of documents and words to find topics of
text documents which are semantically similar.

Usage

top2vec(
x,
data = data.frame(doc_id = character(), text = character(), stringsAsFactors = FALSE),
control.umap = list(n_neighbors = 15L, n_components = 5L, metric = "cosine"),
control.dbscan = list(minPts = 100L),
control.doc2vec = list(),
umap = uwot::umap,
trace = FALSE,
...

)

Arguments

x either an object returned by paragraph2vec or a data.frame with columns ‘doc_id‘
and ‘text‘ storing document ids and texts as character vectors or a matrix with
document embeddings to cluster or a list with elements docs and words contain-
ing document embeddings to cluster and word embeddings for deriving topic
summaries

data optionally, a data.frame with columns ‘doc_id‘ and ‘text‘ representing docu-
ments. This dataset is just stored, in order to extract the text of the most similar
documents to a topic. If it also contains a field ‘text_doc2vec‘, this will be used
to indicate the most relevant topic words by class-based tfidf

top2vec 13

control.umap a list of arguments to pass on to umap for reducing the dimensionality of the
embedding space

control.dbscan a list of arguments to pass on to hdbscan for clustering the reduced embedding
space

control.doc2vec

optionally, a list of arguments to pass on to paragraph2vec in case x is a
data.frame instead of a doc2vec model trained by paragraph2vec

umap function to apply UMAP. Defaults to umap, can as well be tumap

trace logical indicating to print evolution of the algorithm

... further arguments not used yet

Value

an object of class top2vec which is a list with elements

• embedding: a list of matrices with word and document embeddings

• doc2vec: a doc2vec model

• umap: a matrix of representations of the documents of x

• dbscan: the result of the hdbscan clustering

• data: a data.frame with columns doc_id and text

• size: a vector of frequency statistics of topic occurrence

• k: the number of clusters

• control: a list of control arguments to doc2vec / umap / dbscan

Note

The topic ’0’ is the noise topic

References

https://arxiv.org/abs/2008.09470

See Also

paragraph2vec

Examples

library(word2vec)
library(uwot)
library(dbscan)
data(be_parliament_2020, package = "doc2vec")
x <- data.frame(doc_id = be_parliament_2020$doc_id,

text = be_parliament_2020$text_nl,
stringsAsFactors = FALSE)

x$text <- txt_clean_word2vec(x$text)

https://arxiv.org/abs/2008.09470

14 top2vec

x <- subset(x, txt_count_words(text) < 1000)
d2v <- paragraph2vec(x, type = "PV-DBOW", dim = 50,

lr = 0.05, iter = 10,
window = 15, hs = TRUE, negative = 0,
sample = 0.00001, min_count = 5,
threads = 1)

write.paragraph2vec(d2v, "d2v.bin")
d2v <- read.paragraph2vec("d2v.bin")
model <- top2vec(d2v, data = x,

control.dbscan = list(minPts = 50),
control.umap = list(n_neighbors = 15L, n_components = 4), trace = TRUE)

model <- top2vec(d2v, data = x,
control.dbscan = list(minPts = 50),
control.umap = list(n_neighbors = 15L, n_components = 3), umap = tumap,
trace = TRUE)

info <- summary(model, top_n = 7)
info$topwords
info$topdocs
library(udpipe)
info <- summary(model, top_n = 7, type = "c-tfidf")
info$topwords

Change the model: reduce doc2vec model to 2D
model <- update(model, type = "umap",

n_neighbors = 100, n_components = 2, metric = "cosine", umap = tumap,
trace = TRUE)

info <- summary(model, top_n = 7)
info$topwords
info$topdocs

Change the model: have minimum 200 points for the core elements in the hdbscan density
model <- update(model, type = "hdbscan", minPts = 200, trace = TRUE)
info <- summary(model, top_n = 7)
info$topwords
info$topdocs

##
Example on a small sample
with unrealistic hyperparameter settings especially regarding dim / iter / n_epochs
in order to have a basic example finishing < 5 secs
##

library(uwot)
library(dbscan)
library(word2vec)
data(be_parliament_2020, package = "doc2vec")
x <- data.frame(doc_id = be_parliament_2020$doc_id,

text = be_parliament_2020$text_nl,
stringsAsFactors = FALSE)

x <- head(x, 1000)

txt_count_words 15

x$text <- txt_clean_word2vec(x$text)
x <- subset(x, txt_count_words(text) < 1000)
d2v <- paragraph2vec(x, type = "PV-DBOW", dim = 10,

lr = 0.05, iter = 0,
window = 5, hs = TRUE, negative = 0,
sample = 0.00001, min_count = 5)

emb <- list(docs = as.matrix(d2v, which = "docs"),
words = as.matrix(d2v, which = "words"))

model <- top2vec(emb,
data = x,
control.dbscan = list(minPts = 50),
control.umap = list(n_neighbors = 15, n_components = 2,

init = "spectral"),
umap = tumap, trace = TRUE)

info <- summary(model, top_n = 7)
print(info, top_n = c(5, 2))

txt_count_words Count the number of spaces occurring in text

Description

The C++ doc2vec functionalities in this package assume words are either separated by a space or
tab symbol and that each document contains less than 1000 words.
This function calculates how many words there are in each element of a character vector by counting
the number of occurrences of the space or tab symbol.

Usage

txt_count_words(x, pattern = "[\t]", ...)

Arguments

x a character vector with text

pattern a text pattern to count which might be contained in x. Defaults to either space
or tab.

... other arguments, passed on to gregexpr

Value

an integer vector of the same length as x indicating how many times the pattern is occurring in x

Examples

x <- c("Count me in.007", "this is a set of words",
"more\texamples tabs-and-spaces.only", NA)

txt_count_words(x)

16 update.top2vec

update.top2vec Update a Top2vec model

Description

Update a Top2vec model by updating the UMAP dimension reduction together with the HDBSCAN
clustering or update only the HDBSCAN clustering

Usage

S3 method for class 'top2vec'
update(
object,
type = c("umap", "hdbscan"),
umap = object$umap_FUN,
trace = FALSE,
...

)

Arguments

object an object of class top2vec as returned by top2vec

type a character string indicating what to udpate. Either ’umap’ or ’hdbscan’ where
the former (type = ’umap’) indicates to update the umap as well as the hdbscan
procedure and the latter (type = ’hdbscan’) indicates to update only the hdbscan
step.

umap see umap argument in top2vec

trace logical indicating to print evolution of the algorithm

... further arguments either passed on to hdbscan in case type is ’hdbscan’ or to
umap in case type is ’umap’

Value

an updated top2vec object

Examples

For an example, look at the documentation of ?top2vec

write.paragraph2vec 17

write.paragraph2vec Save a paragraph2vec model to disk

Description

Save a paragraph2vec model as a binary file to disk

Usage

write.paragraph2vec(x, file)

Arguments

x an object of class paragraph2vec or paragraph2vec_trained as returned by
paragraph2vec

file the path to the file where to store the model

Value

invisibly a logical if the resulting file exists and has been written on your hard disk

See Also

paragraph2vec

Examples

library(tokenizers.bpe)
data(belgium_parliament, package = "tokenizers.bpe")
x <- subset(belgium_parliament, language %in% "french")
x <- subset(x, nchar(text) > 0 & txt_count_words(text) < 1000)

model <- paragraph2vec(x = x, type = "PV-DM", dim = 100, iter = 20)
model <- paragraph2vec(x = x, type = "PV-DBOW", dim = 100, iter = 20)

path <- "mymodel.bin"

write.paragraph2vec(model, file = path)
model <- read.paragraph2vec(file = path)

vocab <- summary(model, type = "vocabulary", which = "docs")
vocab <- summary(model, type = "vocabulary", which = "words")
embedding <- as.matrix(model, which = "docs")
embedding <- as.matrix(model, which = "words")

Index

as.matrix.paragraph2vec, 2, 6

be_parliament_2020, 3

gregexpr, 15

hdbscan, 13, 16

paragraph2vec, 3, 4, 7–9, 12, 13, 17
paragraph2vec_similarity, 7
predict.paragraph2vec, 6, 8

read.paragraph2vec, 3, 8, 9, 10

summary.top2vec, 11

top2vec, 11, 12, 16
tumap, 13
txt_count_words, 15

umap, 13, 16
update.top2vec, 16

write.paragraph2vec, 17

18

	as.matrix.paragraph2vec
	be_parliament_2020
	paragraph2vec
	paragraph2vec_similarity
	predict.paragraph2vec
	read.paragraph2vec
	summary.top2vec
	top2vec
	txt_count_words
	update.top2vec
	write.paragraph2vec
	Index

